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What is this talk about?

◮ Every distance-preserving homeomorphisms f : Rn → R
n is a

smooth diffeomorphism, obtained by composition of
translations and rotations. In particular ISO(Rn,Eucl) is a
finite dimensional Lie group.
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What is this talk about?

◮ Every distance-preserving homeomorphisms f : Rn → R
n is a

smooth diffeomorphism, obtained by composition of
translations and rotations. In particular ISO(Rn,Eucl) is a
finite dimensional Lie group.

◮ In 1939, Myers and Steenrod proved that every
distance-preserving homeomorphism (henceforth called
isometry) between two Riemannian manifolds is a smooth
diffeomorphism.
Moreover, the group of Riemannian isometries ISO(M, g) of a
manifold (M, g) is a Lie group.
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What is this talk about?

◮ Every distance-preserving homeomorphisms f : Rn → R
n is a

smooth diffeomorphism, obtained by composition of
translations and rotations. In particular ISO(Rn,Eucl) is a
finite dimensional Lie group.

◮ In 1939, Myers and Steenrod proved that every
distance-preserving homeomorphism (henceforth called
isometry) between two Riemannian manifolds is a smooth
diffeomorphism.
Moreover, the group of Riemannian isometries ISO(M, g) of a
manifold (M, g) is a Lie group.

◮ In this talk I will describe a generalization of these results to
the subRiemannian setting, which is due to Capogna, Ottazzi,
and myself.
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Sketch of the proof in the Riemannian case

After Myers-Steenrod, the Riemannian case has been investigated
in a number of papers, for instance Palais (1957), Calabi-Hartman
(1970) and Taylor (2006). Taylor’s proof is based on harmonic
coordinates, here is the simple argument:

Let (M, gM) be a Riemannian manifold an denote by d(·, ·) the
corresponding Riemannian distance function. Let f : M → M be a
homeomorphism such that d(f (x), f (y)) = d(x , y).

We want to show that f is smooth.
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Sketch of the proof in the Riemannian case

◮ Since f is Lipschitz then it is a.e. differentiable
df : TxM → Tf (x)M is an isometry.

◮ f maps the n−dimensional Hausdorff measure Sn
M into itself,

i.e. Sn
M(f (A)) = Sn

M(A) for every Borel set A ⊂ M.
Sn
M is equal to a constant multiple of the Riemannian volume

measure. Hence f maps the Riemannian volume form into
itself.

◮ There exists harmonic coordinates
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Sketch of the proof in the Riemannian case

◮ For any u ∈ Lip(M, g) one has that for a.e. x ∈ M

||∇gu||g(f (x)) = ||∇g (u ◦ f )||g(x)
◮ For any u ∈ Lip(M, g) one has that

∫

M

||∇g (u ◦ f )||2g(f (x))dS
n
M(x) =

∫

M

||∇gu||
2
g(x)dS

n
M(x)

In particular harmonic functions are mapped into harmonic
functions.

◮ If x1, ..., xn is a system of harmonic coordinates then xi ◦ f is
also harmonic, hence smooth for all i = 1, ..., n.
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SubRiemannian manifolds

——— Skip ———
A subRiemannian manifold is a triplet (M,∆, g) where

◮ M is a connected smooth manifold,

◮ ∆ is a subbundle of the tangent bundle TM,

◮ g is a positive-definite smooth bilinear form defined on ∆.

We assume that ∆ bracket generates TM: iteratively set ∆1 := ∆,
and ∆i+1 := ∆i + [∆i ,∆] for i ∈ N; the bracket generating
condition (also called Hörmander’s finite rank hypothesis) is
expressed by the existence of m ∈ N such that, for all p ∈ M,

∆m
p = TpM.
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SubRiemannian manifolds
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SubRiemannian manifolds

——— Skip ———
Analogously to the Riemannian setting, one can endow (M,∆, g)
with a metric space structure by defining the Carnot-Caratheodory

(CC) distance: For any pair x , y ∈ M set

d(x , y) = inf{Lengthg (γ) : γ ∈ C∞([0, 1];M)

with endpoints x , y such that γ̇ ∈ ∆γ}.

By Chow-Rashevsky Theorem, (M, d) is a metric space: such a
distance is always finite and induces on M the original topology.
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SubRiemannian manifolds

——— Skip ———
Analogously to the Riemannian setting, one can endow (M,∆, g)
with a metric space structure by defining the Carnot-Caratheodory

(CC) distance: For any pair x , y ∈ M set

d(x , y) = inf{Lengthg (γ) : γ ∈ C∞([0, 1];M)

with endpoints x , y such that γ̇ ∈ ∆γ}.

By Chow-Rashevsky Theorem, (M, d) is a metric space: such a
distance is always finite and induces on M the original topology.

Curves whose velocity vector lies in ∆ are called horizontal. A
horizontal curve is a geodesic if it is locally distance minimizing. A
geodesic is normal if it satisfies the subRiemannian analogue of the
geodesic equation. One of the striking features of subRiemannian
geometry is that not all geodesics are normal.Enrico Le Donne (with L. Capogna & A. Ottazzi) Regularity of isometries between subRiemannian manifolds
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SubRiemannian manifolds

Definition
A subRiemannian manifold (M,∆, g) is equiregular if, for all
i ∈ N, the dimension of ∆i

p is constant in p ∈ M.
In other words,

∆1 ⊆ ∆2 ⊆ · · · ⊆ ∆m = TM

is a flag of subbundles.

As a result of Mitchell, the Hausdorff dimension of (M, d)
coincides with the so-called homogenous dimension

Q :=
m∑

i=1

i [dim(∆i
p)− dim(∆i−1

p )]. (1)
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SubRiemannian manifolds

Any arbitrary subRiemannian structure is equiregular in an open
dense subset.

For this talk:
subRiemannian manifold = equiregular smooth subRiemannian
manifold (with bracket generating subbundle)
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SubRiemannian manifolds: Example

——— Skip ———
Heisenberg group: This is a nilpotent Lie group whose underlying
manifold is M = R

3. The horizontal distribution is given by

∆ = span

{
(1, 0,−y); (0, 1, x)

}

and the metric g is defined so that the frame above is orthonormal.

This is a subRiemannian manifold, with homogeneous dimension
Q = 4. The geodesics are all smooth and normal.

This is the standard example for the class of Carnot groups i.e.,
nilpotent stratified Lie groups endowed with a subRiemanian
metric.
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Carnot groups

◮ Carnot groups are exactly the metric tangent spaces (à la
Gromov) of subRiemannian manifolds.
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Carnot groups

◮ Carnot groups are exactly the metric tangent spaces (à la
Gromov) of subRiemannian manifolds.

◮ The Euclidean space R
n is the metric tangent at any point of

any Riemannian n-manifold.

◮ Carnot groups are particular Lie groups (nilpotent and
admitting a one-parameter family of automorphisms δλ)
equipped with a left-invariant subRiemannian structure with
respect to the subbundle Ker(δλ − λ).
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Main results: SubRiemannian setting

Theorem (L.Capogna & E.L.D.)

Isometries between subRiemannian manifolds are smooth.
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Main results: SubRiemannian setting

Theorem (L.Capogna & E.L.D.)

Isometries between subRiemannian manifolds are smooth.

Theorem (Hamenstädt, Kishimoto, E.L.D. & Ottazzi)

Isometries between open sets in Carnot groups are affine maps,

i.e., composition of translations and isomorphisms.
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Consequences: SubRiemannian setting

Corollary

If M is a subRiemannian manifold, then Isom(M) admits a

structure of finite-dimensional Lie group.
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Consequences: SubRiemannian setting

Corollary

If M is a subRiemannian manifold, then Isom(M) admits a

structure of finite-dimensional Lie group.

Corollary

Any isometry F between subRiemannian manifolds is determined

by the value F (p) at an arbitrary point p and the horizontal

differential dF |∆p
.
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Consequences: SubRiemannian setting

Corollary

If M is a subRiemannian manifold, then for all compact subgroup

K < Isom(M), there exists a Riemannian extension gK on M such

that K < Isom(M, gK ).
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Consequences: SubRiemannian setting

Corollary

If M is a subRiemannian manifold, then for all compact subgroup

K < Isom(M), there exists a Riemannian extension gK on M such

that K < Isom(M, gK ).

In particular, since the group of isometries that fixes a point
p ∈ M, denoted by Isomp(M), is compact (by Ascoli-Arzelà) then
we have:

Corollary

If M is a subRiemannian manifold, then for all p ∈ M, there exists

a Riemannian extension ĝ on M such that

Isomp(M) < Isom(M, ĝ).
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Previous contributions

◮ Hamenstädt, 1990 proved the theorem with the hypothesis
that there are only normal geodesics.

◮ Kishimoto, 2003 sketched an argument to adapt Hamenstädt
proof to show that every global isometry between Carnot
groups is smooth and then affine.

◮ Ottazzi and myself gave a different argument for isometries
between open subsets of a Carnot group. The regularity part
of our proof follows from the work of Capogna and Cowling
and is based on regularity for nonlinear degenerate elliptic
PDE.
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Difficulties #1: Differentiation

The Tangent space is not obtained by freezing coefficients: The
tangent cone of the metric space (M, d) at a point p ∈ M is the
Gromov-Hausdorff limit Np(M) := limt→0(M, d/t, p). In view of
Rothschild-Stein and of Mitchell’s work the metric space Np(M) is
described by the nilpotent approximation associated to the spaces
∆i

p. In particular, Np(M) is a Carnot group. The analogue of

Rademacher Theorem is a deep result of Margulis-Mostow, it does
not yield a linear map df : TpM → Tf (p)M but a Lie group
isomorphism between the nilpotent tangent cones.
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Difficulties #2: Hausdorff measure misbehaves

Given any C∞ volume form volM on M, we have a C∞ volume
form induced by volM on the nilpotent approximation Np(M),
which we denote by Np(volM).

Theorem (Agrachev, Barilari, Boscain 2012)

Denote by Q the Hausdorff dimension of M and by SQ
M the

spherical Hausdorff measure on M. Any C∞ volume form is

related to SQ
M by

d volM = 2−QNp(volM)(BNp(M)(e, 1))dS
Q
M . (2)

BNp(M)(e, 1) is the unit ball in the metric space Np(M) with
center the identity element. Unlike the Riemannian case: the
density p → Np(volM)(BNp(M)(e, 1)) is not smooth!
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Difficulties #3: No harmonic coordinates (so far)

The construction of (Riemannian) harmonic coordinates is
ultimately based on freezing the coefficients of the Laplace
Beltrami operator, thus reducing the problem to the usual
Laplacian in Euclidean space. Freezing coefficients does not work
in this setting, as it would lead to loosing the Hörmander
finite-rank condition.
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We prove the regularity result in two steps:

Theorem
Let F : M → N be an isometry between two subRiemannian

manifolds. If there exist two C∞ volume forms volM and volN such

that F∗ volM = volN , then F is a C∞ diffeomorphism.

A C∞ volume form on an n-dimensional manifold is the measure
associated to a C∞ nonvanishing n-form on the manifold. When
F : M → N is a continuous map, the measure F∗ volM is defined
by F∗ volM(A) := volM(F−1(A)), for all measurable sets A ⊆ N.

This is a strong hypothesis!
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Sketch of the proof in the subRiemannian case

The proof uses an approach informed by the theory of analysis in
metric measured spaces. We rely on the concept of upper gradient
of a function u : (X , d) → R defined as a Borel function
ρ : X → R such that for any x , y ∈ X and any 1−Lipschitz curve γ
joining x to y , one has

|u(x)− u(y)| ≤

∫

γ

ρ ds

The minimal upper gradient is the smallest locally integrable g

such that the inequality holds.
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Sketch of the proof in the subRiemannian case

Fact 1 Minimal upper gradients are invariant by
measure-preserving isometries (trivial)
Fact 2 The minimal upper gradient of a Lipschitz function
u : M → R on a subRiemanian manifold (M,∆, g) is ||∇Hu||g
where ∇H is the gradient of the function along the fiber
∆p ⊂ TpM. (Hajlasz-Koskela 2003)
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Sketch of the proof in the subRiemannian case

Using Fact 1 and 2 one can easily prove that
If u ∈ Liploc(N) and g ∈ L2(M) solve

∫

M

〈∇Hu,∇Hv〉 d volM =

∫

M

gv d volM , ∀v ∈ Lipc(M),

then the functions ũ := u ◦ F and g̃ := g ◦ F solve

∫

M

〈∇Hũ,∇Hv〉 d volM =

∫

M

g̃v d volM , ∀v ∈ Lipc(M).
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Sketch of the proof in the subRiemannian case

Theorem (Rothschild-Stein)

Let X0,X1, ...,Xr be a system of smooth vector fields in R
n

satisfying Hörmander’s finite rank hypothesis. Let

L :=

r∑

i=1

X 2
i + X0 (3)

and consider a distributional solution to the equation Lu = f in

R
n. For every k ∈ N ∪ {0} and 1 < p < ∞, if f ∈ W

k,p
H

(Rn,Ln)

then u ∈ W
k+2,p
H,loc (Rn,Ln).
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Sketch of the proof in the subRiemannian case

For any p ∈ M let us consider now any set of coordinates

x1, ..., xn

around f (p). These smooth functions solve for some smooth
functions gi the linear degenerate elliptic PDE
∫

M

〈∇Hxi ,∇Hv〉 d volM =

∫

M

giv d volM , ∀v ∈ Lipc(M), i = 1, ..., n

In view of the invariance by F from the previous slide one has that
for all i = 1, ..., n
∫

M

〈∇HFi ,∇Hv〉 d volM =

∫

M

(gi ◦ f )v d volM , ∀v ∈ Lipc(M).

where we have set Fi := xi ◦ F . Since g ◦ F is in L
p
loc for all

1 < p < ∞ then Rotschild-Stein Lp estimates yield F ∈ W
1,p
loc . The

smoothness of F now follows from a bootstrap argument.
Enrico Le Donne (with L. Capogna & A. Ottazzi) Regularity of isometries between subRiemannian manifolds



Sketch of the Riemannian case
subRiemannian manifolds

Sketch of the subRiemannian case

Sketch of the proof in the subRiemannian case: Popp’s
measure

We consider a canonical smooth volume form that is defined only
in terms of the subRiemannian structure, the so-called Popp’s
measure and show the following result.

Theorem
Let F : M → N be an isometry between subRiemannian manifolds.

If volM and volN are the Popp’s measures on M and N,

respectively, then F∗ volM = volN .

The only thing we need to know about Popp’s measures volM is
that their lift to the tangent cone is itself (by left invariance) the
popp measure of the tangent cone, i.e.

Np(volM) = volNp(M) .
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Sketch of the proof in the subRiemannian case: Popp’s
measure

Next: Passing to tangents, there exists a (not a priori unique)
isometry Gp : Np(M) → NF (p)(M), fixing the identity.
In particular, the unit balls of the tangents are the same, i.e.,

Gp(BNp(M)(e, 1)) = BNF (p)(M)(e, 1), (4)

and the Popp’s measures are preserved:

(Gp)∗ volNp(M) = volNF (p)(M),

since on Carnot groups Popp’s measures are Haar measures.
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Sketch of the proof in the subRiemannian case: Popp’s
measure

F∗ volM(A) = volM(F−1(A))

=
1

2Q

∫

F−1(A)
Np(volM)(BNp(M)(e, 1))dS

Q
M (p)

=
1

2Q

∫

F−1(A)
Np(volM)

(
G−1
p (BNF (p)(N)(e, 1))

)
dSQ

M(p)

=
1

2Q

∫

F−1(A)
(Gp)∗ Np(volM)

(
BNF (p)(N)(e, 1)

)
dSQ

M(p)

=
1

2Q

∫

F−1(A)
(Gp)∗ volNp(M)

(
BNF (p)(M)(e, 1)

)
dSQ

M(p)
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Sketch of the proof in the subRiemannian case: Popp’s
measure

=
1

2Q

∫

F−1(A)
volNF (p)(M)

(
BNF (p)(M)(e, 1)

)
dSQ

M(p)

...through a chance of variables q = F (p), using invariance of
Hausdorff measure by isometry ....

=
1

2Q

∫

A

volNq(M)(BNq(M)(e, 1))dS
Q
M (q)

=
1

2Q

∫

A

Nq(volM)(BNq(M)(e, 1))dS
Q
M (q)

= volM(A).

This concludes the proof.
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Popp’s volume for subRiemannian manifolds

Since (M,∆, g) is equiregular, we have the flag of subbundles:

∆1 ⊆ ∆2 ⊆ · · · ⊆ ∆m = TM.

Fix q ∈ M. Let

grq(∆) := ∆q ⊕∆2
q/∆q ⊕ . . . ⊕∆m

q /∆
m−1
q

grq(∆) has a natural volume form, which is the canonical volume
of an inner product space obtained by wedging the elements an
orthonormal dual basis.
Then there is a canonical isomorphism Λn(TpM) → Λngrq(∆).
This defines an element of (ΛnTqM)∗ ≃ ΛnT ∗

qM , which is defined
to be the Popp’s volume form computed at q.
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The Montgomery-Zippin Theorem

A key ingredient for our structure result is given by the following
theorem:

Theorem (Montgomery-Zippin)

Let G be a locally compact effective transformation group of a

connected manifold M and let each transformation of G be

smooth. Then G does not contain small subgroups and is a Lie

group
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The Montgomery-Zippin Theorem

A key ingredient for our structure result is given by the following
theorem:

Theorem (Montgomery-Zippin)

Let G be a locally compact effective transformation group of a

connected manifold M and let each transformation of G be

smooth. Then G does not contain small subgroups and is a Lie

group

This theorem builds upon work of Yamabe, Gleason,
Bochner-Montgomery, and many others. It is related to Hilbert’s
fifth problem.
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SubRiemannian vs Riemannian isometries

Since Isom(M) is locally compact by Ascoli-Arzelà, from the result
of Montgomery and Zippin, we have that Isom(M) is a Lie group.
Fix an auxiliary Riemannian extension ĝ of g and define

g̃ =

∫

H

F∗ĝ dµH(F ),

where µH is a probability Haar measure on the compact subgroup
H := Isomp(M). Notice that G := {F∗ĝ : F ∈ H} is a compact set
of Riemannian tensors extending the subRiemannian structure on
M. Hence, g̃ is a Riemannian extention and is
Isomp(M)-invariant. In other words, Isomp(M) < Isom(M, g̃).
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First-order expantion

Lemma
Let (M,∆, g) be a connected subRiemannian manifold. Let g̃ be a

Riemannian extension of g. Assume that a C∞ map F : M → M

is a Riemannian isometry for g̃ and a subRiemannian isometry for

g and assume that there exists p ∈ M such that F (p) = p and

dF |∆p
= id∆p

. Then dF |TpM = idTpM and hence F = idM .
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Isometries of Lie groups

◮ There are (sub)Riemannian Lie groups that are isometric, but
not isomorphic.

◮ There are self-isometries of (sub)Riemannian Lie groups that
are not automorphisms.

◮ Isometries between nilpotent Riemannian Lie groups are
isomorphisms.
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